Human p32 is a novel FOXC1-interacting protein that regulates FOXC1 transcriptional activity in ocular cells.
نویسندگان
چکیده
PURPOSE Mutations in the human forkhead box C1 gene (FOXC1) cause Axenfeld-Rieger (AR) malformations, often leading to glaucoma. Understanding the function of FOXC1 necessitates characterizing the proteins that interact with FOXC1. This study was undertaken to isolate FOXC1-interacting proteins and determine their effects on FOXC1. METHODS To identify FOXC1-interacting proteins, a human trabecular meshwork (HTM) yeast two-hybrid (Y2H) cDNA library was screened. The interaction and colocalization between FOXC1 and its putative protein partner were confirmed by Ni(2+) pull-down assays, immunoprecipitation, and immunofluorescence, respectively. The electrophoretic mobility shift assay (EMSA) was used to study the effect of the interacting protein on FOXC1 DNA-binding ability. Dual luciferase assays using FOXC1 reporter plasmids in HTM cells were performed to determine the effect of the interaction on FOXC1 transcription activity. RESULTS The human p32 protein was isolated as a putative FOXC1-interacting protein from a Y2H screen. The interaction of FOXC1 with p32 was confirmed by Ni-pull-down assays and immunoprecipitation. Although p32 is predominantly cytoplasmic, the portion of p32 that is within the nucleus colocalizes with FOXC1. The FOXC1 forkhead domain (FHD) was identified as the p32 interaction domain. p32 significantly inhibited FOXC1-mediated transcription activation in a dose-dependent manner but did not affect FOXC1 DNA-binding ability. Of interest, a FOXC1 mutation F112S displayed an impaired interaction with p32. CONCLUSIONS In the study, the human p32 protein as a novel regulator of FOXC1-mediated transcription activation. Failure of p32 to interact with FOXC1 containing the disease-causing F112S mutation indicates that impaired protein interaction may be a disease mechanism for AR malformations.
منابع مشابه
FOXC1 in cancer development and therapy: deciphering its emerging and divergent roles
Forkhead box C1 (FOXC1) is an essential member of the forkhead box transcription factors and has been highlighted as an important transcriptional regulator of crucial proteins associated with a wide variety of carcinomas. FOXC1 regulates tumor-associated genes and is regulated by multiple pathways that control its mRNA expression and protein activity. Aberrant FOXC1 expression is involved in di...
متن کاملFOXC1 modulates MYOC secretion through regulation of the exocytic proteins RAB3GAP1, RAB3GAP2 and SNAP25
The neurodegenerative disease glaucoma is one of the leading causes of blindness in the world. Glaucoma is characterized by progressive visual field loss caused by retinal ganglion cell (RGC) death. Both surgical glaucoma treatments and medications are available, however, they only halt glaucoma progression and are unable to reverse damage. Furthermore, many patients do not respond well to trea...
متن کاملInitiation of Early Osteoblast Differentiation Events through the Direct Transcriptional Regulation of Msx2 by FOXC1
Hierarchal transcriptional regulatory networks function to control the correct spatiotemporal patterning of the mammalian skeletal system. One such factor, the forkhead box transcription factor FOXC1 is necessary for the correct formation of the axial and craniofacial skeleton. Previous studies have demonstrated that the frontal and parietal bones of the skull fail to develop in mice deficient ...
متن کاملA complex regulatory network of transcription factors critical for ocular development and disease.
The PITX2 'homeobox' and FOXC1 and FOXC2 'forkhead box' transcription factors are critical for eye development and cause human ocular diseases when mutated. We have identified biochemical and genetic links between these transcription factors and a transcriptional regulator protein PRKC apoptosis Wilms' tumor 1 regulator (PAWR) that we propose to functionally connect all these proteins in a comm...
متن کاملFOXC1 is associated with estrogen receptor alpha and affects sensitivity of tamoxifen treatment in breast cancer
FOXC1 is a member of Forkhead box transcription factors that participates in embryonic development and tumorigenesis. Our previous study demonstrated that FOXC1 was highly expressed in triple-negative breast cancer. However, it remains unclear what is the relation between FOXC1 and ERα and if FOXC1 regulates expression of ERα. To explore relation between FOXC1 and ERα and discover regulation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 49 12 شماره
صفحات -
تاریخ انتشار 2008